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SUMMARY 

In Korean beef industry, selection indices are currently limited to carcass weight (CWT), 

marbling score (MS), eye muscle area (EMA) and back fat thickness (BFT), which are the four traits 

used to determine the grade of a carcass. However, other important traits have received less 

attention; for example, yearling weight which influences both meat quality and the yields of the 

primal cuts that command premium prices. In this paper, we evaluate how well genomic prediction 

based on routinely measured phenotypes (body weight at different ages 6, 12, 18 and 24 months, 

CWT and EMA) can predict other commercially important traits (MS, BFT, various primal cuts and 

total percentage of meat yield) which are not usually recorded. We also compare the prediction 
accuracy of the primal cuts and yield derived from body weight and carcass weight predictors with 

the prediction accuracy using the trait itself. Our results suggest that, direct genomic prediction of 

primal cuts and yield had a higher accuracy, and in the future some consideration should be given 

to better account for primal cuts and yield in the breeding program. 

 

INTRODUCTION  

Hanwoo is the most important cattle in Korea and its history traces back 5,000 years (Jo et al. 

2012). Hanwoo beef has unique marbling characteristics which makes it highly sought after by 

consumers at premium prices (Han and Lee 2010; Kim et al. 2010; Jo et al. 2012). Korean cattle 

breeding policies are primarily focused on increasing marbling and body weight. These two traits, 

particularly marbling score, are the key determinants of the carcass’ grade and, consequently, its 
price (Park et al. 2002; Kim et al. 2010; Alam et al. 2013). Since marbling drives most of the profit 

in the Korean beef industry, producers often prolong feeding periods to achieve better marbling, 

even if at the expense of increased backfat thickness (BFT) which incurs a grading penalty.  

Considerable effort to select superior Hanwoo bulls based on the genetic parameter estimates of 

carcass traits has already been made (Lee et al. 2000; Baik et al. 2003; Choy et al. 2008). However, 

selection indices are currently limited to carcass weight (CWT), marbling score (MS), eye muscle 

area (EMA) and backfat (BFT), which are the four traits used to determine the grade of a carcass. 

However, other important traits have received less attention; for example, yearling weight which 

influences both meat quality and quantity (Lopez-Campos et al. 2012), and the yields of the primal 

cuts that command premium prices. Differences in price exist between different primal cuts (Morris 

et al. 2010)  and large variation in yield of the primals within each grade has been reported (Moon 

et al. 2003). This variation affects the accuracy of the estimates of grading and consequently there 
is significant averaging out in the payment system. Thus, the current grading scheme based on CWT, 

MS, EMA and BFT may not accurately reflect the differences within the carcass primal cuts and the 

actual realized sales price in the retail market.  

The broad adoption of molecular technologies for genomic selection in livestock species (Hayes 

et al. 2009; Goddard et al. 2010) has significantly increased the rate of genetic progress. Genomic 

selection can provide more accurate estimates of breeding values earlier in the life of breeding 

animals, higher selection accuracy and shortening of generation intervals. Additionally, hard or 

expensive to measure traits can be improved more effectively by predicting EBVs of un-phenotyped 

animals directly from their genotypes (Gondro et al. 2013). Thus, genomic selection allows new 
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traits to be selected on and provides the information needed for better indexes and payment/reward 

systems. The ability to better align the grading system with the actual retail value of the carcass can 

provide significant benefits to the Korean beef industry.  

In this paper, we evaluate how well genomic prediction based on routinely measured phenotypes 

(body weight at different ages 6, 12, 18 and 24 months, carcass weight and eye muscle area) can 
predict other commercially important traits (MS, BFT, various primal cuts and total percentage of 

meat yield) which are not usually recorded. We also compare the prediction accuracy of the primal 

cuts derived from body weight and carcass weight predictors with the prediction accuracy using the 

trait itself. 

 

MATERIALS AND METHODS 

Animals and Traits: The present study analysed the 

records of 1,092 Hanwoo males raised under the Korean 

National Hanwoo Cattle Improvement System from 

1997 to 2013. The growth and carcass traits considered 

in the present study included body weights at different 

ages (6, 12, 18 and 24 months), cold carcass weight 
(CWT), eye muscle area (EMA), back fat thickness 

(BFT), and marbling score (MS). Primal-cut yield 

(percent of carcass weight composed of both unique and 

composite meat cuts from the forequarters and 

hindquarters) included the yields of chuck (CHK), 

shoulder (SLD), brisket and flank (BAF), ribs (RIB), 

tenderloin (TLN), striploin (STLN), sirloin (SLN), top 

round (TRND), round (RND), fore- and hind-shins 

(FHS), and total primal cut (TPC, sum of all primal cuts) 

and percentage of meat yield (Meat %). Summary data 

on different weights, carcass traits and primal-cut yields 
are shown in Table 1.  

Statistical Analysis: Heritability of each trait was 

estimated using a univariate model in MTG2 software 

(Lee and van der Werf 2016). As multi-trait (3 x 3 and 

more) analyses failed to converge, a series of bivariate 

analyses using MTG2 was used to calculate the genetic correlations between the traits. Relationship 

among the animals were accounted for using a genomic relationship matrix (GRM) obtained from 

SNP data and was fitted as a random effect in the model. Phenotypic correlations were calculated as 

the Pearson correlations between the residuals of the phenotypes after removing the fixed effects 

using a liner model in R.  

Prediction of genomic breeding values were obtained from the genomic best linear unbiased 

prediction (GBLUP) method in MTG2. Prediction accuracy was calculated as the Pearson 
correlation between the adjusted phenotypes (residuals of the phenotypes after accounting for the 

fixed effects) divided by the square root of the heritability of the trait. The average of 10-fold cross 

validation with 10 replicates is reported herein. 

 

RESULTS AND DISCUSSION 

Heritabilities for the traits were all moderate to high, ranging from 0.24 for WT6m to 0.71 for 

RND. Comparing the rest of the traits, top round and round have very high heritability. Standard 

errors for the heritabilities ranged between 0.07 and 0.08. 

Genetic correlations between body weight, carcass weight and EMA with different primal cuts 

Table 1. Phenotypic mean, standard 

deviation and heritability with SE 

Trait Mean SD h2 (±SE) 

WT6m 169.07 31.08 0.24±0.07 

WT12m 320.91 41.27 0.29±0.07 
WT18m 483.93 52.08 0.39±0.08 
WT24m 634.86 67.66 0.48±0.08 
CWT 362.33 41.14 0.56±0.08 
EMA 81.28 8.72 0.49±0.07 
BFT 8.48 3.3 0.48±0.08 
MS 3.38 1.56 0.56±0.08 
CHK 12.94 3.71 0.34±0.07 
SLD 22.84 2.84 0.62±0.07 

BAF 27.92 4.95 0.38±0.08 
RIB 55.68 7.59 0.41±0.08 
TLN 5.8 0.79 0.49±0.08 
STLN 34.8 4.55 0.51±0.08 
SLN 7.46 1.08 0.50±0.08 
TRND 19.52 2.31 0.70±0.07 
RND 31.87 3.75 0.71±0.07 
FHS 14.46 2.61 0.32±0.08 

TPC 233.28 26.15 0.58±0.08 
Meat % 64.46 2.72 0.43±0.07 



Proc. Assoc. Advmt. Anim. Breed. Genet. 22:187-190 

189 

are shown in Table 2. Genetic correlations between weights and different primal cuts increase as the 

cattle become older. Although all primal cuts and the total primal cuts have medium to very high 

genetic correlations with body weight, carcass weight and EMA, Meat % has very low or negative 

correlations with these traits except for EMA. EMA has moderate generic correlations with Meat % 

(0.47±0.12) and selection for EMA can increase percentage of meat yield. WT12m had a relatively 
higher correlation with TLN and CWT had a higher correlation with STLN compared to other loin 

cuts.  

 
Table 2. Genetic correlations with SE between weight at different ages, carcass traits and primal-cut 

yields  

 CHK SLD BAF RIB TLN STLN 

WT6m 0.37±0.18 0.45±0.13 0.44±0.16 0.5±0.13 0.59±0.13 0.52±0.13 
WT12m 0.61±0.14 0.68±0.09 0.61±0.12 0.71±0.08 0.8±0.08 0.68±0.08 
WT18m 0.61±0.12 0.73±0.06 0.73±0.09 0.85±0.05 0.76±0.07 0.76±0.06 
WT24m 0.59±0.11 0.76±0.05 0.85±0.06 0.94±0.03 0.76±0.06 0.83±0.04 
CWT 0.67±0.09 0.82±0.04 0.86±0.06 0.96±0.02 0.76±0.06 0.87±0.03 
EMA 0.58±0.11 0.70±0.07 0.60±0.10 0.57±0.10 0.60±0.09 0.81±0.05 

 SLN TRND RND FHS TPC Meat % 

WT6m 0.45±0.14 0.4±0.13 0.45±0.12 0.4±0.18 0.51±0.12 -0.21±0.16 
WT12m 0.73±0.09 0.62±0.09 0.67±0.08 0.7±0.12 0.75±0.07 -0.12±0.16 
WT18m 0.77±0.07 0.75±0.06 0.76±0.06 0.74±0.1 0.85±0.04 -0.15±0.14 
WT24m 0.77±0.06 0.81±0.05 0.8±0.05 0.78±0.08 0.91±0.02 -0.1±0.13 
CWT 0.80±0.05 0.86±0.04 0.85±0.03 0.89±0.06 0.96±0.01 -0.08±0.13 
EMA 0.85±0.05 0.77±0.06 0.70±0.06 0.83±0.10 0.76±0.06 0.47±0.12 

 
Prediction accuracy of growth traits and carcass traits using weights at different ages, CWT and 

EMA are given in Table 3. Weight traits, not surprisingly, are good predictors of each other but poor 

predictors of BFT and marginally better for MS. EMA could be predicted with reasonable and 

increasing accuracy from the body weights as the animal ages and from CWT.  
 

Prediction 

accuracies 

of primal 

cuts and 

meat yield 

percentage 

using 

weights at 

different 
ages, CWT and EMA are summarized in Table 4. On average, accuracies of primal predictions 

increase as age increases (0.205 WT6m; 0.279 WT12m, 0.322 WT18m, 0.365 WT24m, 0.405 CWT) 

but always lower than the accuracies derived from the primal traits themselves (average 0.456).  

Interestingly all body weights at different ages and CWT failed completely to predict the percentage 

of meat yield. This could be explained with the fact that, we observed very low or negative genetic 

and phenotypic (data not shown) correlations between these traits and Meat% trait. However, in 

comparison to the other traits, EMA performed quite well to predict the percentage of meat yield 

(accuracy was 28%). 

The last row of Table 4 shows the prediction accuracies for the primal cuts when the trait itself 

was used in the prediction model. On average, prediction of primal cuts from the primal cuts 

phenotypes themselves increased prediction accuracies in 122.8% in relation to WT6m, 63.27% 

Table 3. Prediction accuracies of growth traits and carcass traits using body weights, 

CWT and EMA 

 WT6m WT12m WT18m WT24m CWT EMA BFT MS 

WT6m 0.34 0.31 0.25 0.22 0.23 0.18 0.03 0.09 
WT12m - 0.38 0.34 0.29 0.30 0.22 0.06 0.10 
WT18m - - 0.39 0.37 0.36 0.26 0.09 0.11 
WT24m - - - 0.41 0.41 0.29 0.08 0.12 
CWT - - - - 0.45 0.33 0.09 0.13 
EMA - - - - 0.30 0.46 -0.08 0.13 
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WT12m, 41.29% WT18m, 24.87% WT24m, 12.78% CWT and 34.42% EMA. Prediction accuracy 

of percentage of meat yield from itself had a 46% accuracy. 
 

CONCLUSIONS 

Genomic predictions from 

weights measured later in life and 

CWT are useful correlated traits to 

select on primals but come at an 
increase in generation interval (and 

CWT is essentially nonsensical in 

practice). The highest accuracies 

of selection were obtained directly 

from the primal cuts themselves 

but adoption requires investment in 

phenotyping and genotyping. 

There is good potential to make 

better use of genomics to improve 

selection for high valued cuts and 

redesign the selection indexes as 
well as the grading system to better 

reflect the true value of a carcass. 

EMA was somewhat useful to predict yield but weights were very poor predictors; here again, direct 

genomic prediction of yield had a high accuracy, in the future some consideration should be given 

to better account for yield in the breeding program.        
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Table 4. Prediction accuracy of primal cuts weights from 

weights at different ages, CWT and EMA 

 CHK SLD BAF RIB TLN STLN 

WT6m 0.18 0.23 0.18 0.18 0.23 0.22 
WT12m 0.26 0.31 0.23 0.25 0.31 0.28 

WT18m 0.28 0.34 0.29 0.32 0.32 0.33 
WT24m 0.29 0.39 0.35 0.39 0.35 0.38 
CWT 0.34 0.43 0.38 0.42 0.36 0.42 
EMA 0.32 0.37 0.27 0.26 0.30 0.38 
^ 0.41 0.52 0.38 0.42 0.45 0.47 

 SLN TRND RND FHS TPC Meat % 

WT6m 0.20 0.21 0.22 0.18 0.22 0.00 

WT12m 0.29 0.28 0.29 0.27 0.30 0.03 
WT18m 0.32 0.34 0.34 0.30 0.36 0.01 
WT24m 0.35 0.39 0.38 0.34 0.41 0.03 
CWT 0.38 0.43 0.43 0.40 0.46 0.05 
EMA 0.38 0.39 0.36 0.36 0.37 0.28 
^ 0.46 0.52 0.51 0.38 0.49 0.46 

^ Prediction of the trait from itself 


